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ABSTRACT
Deep Graph Neural Networks (GNNs) show promising performance

on a range of graph tasks, yet at present are costly to run and lack

many of the optimisations applied to DNNs. We show, for the first

time, how to systematically quantise GNNs with minimal or no

loss in performance using Network Architecture Search (NAS).

We investigate the novel quantisation search space of GNNs. The

proposed NAS mechanism, named Low Precision Graph NAS (LPG-

NAS), constrains both architecture and quantisation choices to be

differentiable. LPGNAS learns the optimal architecture coupledwith

the best quantisation strategy for different components in the GNN

automatically using back-propagation in a single search round. On

the citation datasets, solving the task of classifying unseen nodes

in a graph, LPGNAS generates quantised models with significant

reductions in both model and buffer sizes but with similar accuracy

to manually designed networks and other NAS results. The reduced

latency with quantisation is crucial for the speed of GNN based

query answering and the smaller RAM requirements support larger

batch sizes and thus a larger service throughput. In particular, on

the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto

frontier compared to seven other manual and searched baselines,

offering a 2.3× reduction in model size and also a 0.4% increase in

accuracy when compared to the best NAS competitor.

1 INTRODUCTION
Graph Neural Networks (GNNs) have been successful in fields

such as computational biology [33], social networks [6], knowledge

graphs [11], etc.. The ability of GNNs to apply learned embeddings

to unseen nodes or new subgraphs is useful for large scale machine

learning systems on graph data, ranging from analysing posts on

forums to creating product listings for shopping sites [6]. Most

of the large production systems have high throughputs, running

millions or billions of GNN inferences per second. This creates an

urgent need to minimise both the computation and memory cost

of GNN inference.

One common approach to reduce computation andmemory over-

heads of Deep Neural Networks (DNNs) is quantisation [8, 9, 25, 29,

32]. A simpler data format not only reduces the model size but also

introduces the chance of using simpler arithmetic operations on

existing or emerging hardware platforms [8, 29]. Previous quanti-

sation methods focusing solely on DNNs with image and sequence

data will not obviously transfer well to GNNs. First, in CNNs and

RNNs, it is the convolutional and fully-connected layers that are

quantised [8, 14]. GNNs, however, follow a sample and aggregate
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approach [6, 30], where we can separate a basic building block in

GNNs into four smaller sub-blocks (Linear, Attention, Aggregation

and Activation); only a subset of these sub-blocks has trainable

parameters. Second, the design of GNN blocks involves a different

design space, where several attention and aggregation methods are

available and the choices of these methods have a direct interaction

with numerical precisions. Third, previous CNN NAS methods [19]

consider two possible quantisable components (weights and activa-

tions) for a single layer. Given 𝑛 quantisation options, this provides

𝑛2 combinations. We show that a single GNN layer has 𝑛6 quan-

tisation combinations, offering a significantly larger quantisation

search space (Section 3.1).

In this paper, we propose Low Precision Graph NAS (LPGNAS),

which aims to automatically design quantised GNNs. The proposed

NAS method is single-path, one-shot and gradient-based. Addition-

ally, the quantisation options of LPGNAS are at a micro-architecture

level so that different sub-blocks in a graph block can have differ-

ent quantisation strategies. In this paper, we make the following

contributions.

• To our knowledge, this is the first piece of work studying how

to systematically quantise GNNs.We identify the quantisable

components and possible search space for GNN quantisation.

• We present a single-path, one-shot and gradient-based NAS

algorithm (LPGNAS) for automatically finding low precision

GNNs.

• We report LPGNAS results, and show how they significantly

outperfrom previous state-of-the-art NAS methods and man-

ually designed networks in terms of memory consumption

on the same accuracy budget on the citation datasets.

2 RELATEDWORK
In this section, we first provide relevant literature in the field of

quantisation and network architecture search in Section 2.1. We

then review prior work in the field of graph neural networks and ex-

plain what recently proposed GNN NAS can achieve in Section 2.2.

2.1 Quantisation and network architecture
search

DNNs offer great performance and rapid time-to-market path on

a broad variety of tasks. Unfortunately, their high memory and

computation requirements can be challenging when deploying in

real-world scenarios. Quantisation directly shrinks model sizes

and rapidly simplifies the complexity of the arithmetic hardware.

Previous research shows that DNN models can be quantised to

surprisingly low precisions such as ternary [32] and binary [8].
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Networks with extremely low precision weights have a signifi-

cant task accuracy drop due to the numerical errors introduced,

and sometimes require architectural changes to compensate [8].

In contrast, fixed-point numbers [9, 14] and other more complex

arithmetics [25, 29] have larger bitwidths but offer a better task

accuracy. These quantisation methods have primarily been applied

on convolutional and fully-connected layers since they are the most

compute-intensive building blocks in CNNs and RNNs. Another

way of reducing the inference cost of DNNs is architectural engi-

neering. For instance, using depth-wise separable convolutions to

replace normal convolutions not only costs fewer parameters but

also achieves comparable accuracy [7]. However, architectural en-

gineering is normally tedious and complex; recent research on NAS

reduces the amount of manual tuning in the architecture design

process. Initial NAS methods used evolutionary algorithms and

reinforcement learning to find optimal network architectures, but

each iteration of the search fully trains and evaluates many child

networks [13, 34], thus needing a huge amount of computation

resources and time. Liu et al. proposed Differentiable Architecture

Search (DARTs) that creates a supernet with all possible operations

connected by probabilistic priors [12]. The search cost of DARTs is

reduced by orders of magnitude – it is the same as training a single

supernet (one-shot). In addition, DARTs is gradient-based, meaning

that standard Stochastic Gradient Descent (SGD) now can be used

to update these probabilistic priors. One major drawback of DARTs

is that all operations of the supernet are active during the search.

Recently proposed single-path NAS methods only update a sam-

pled network from the supernet at each search step, and are able

to converge quickly and significantly reduce the computation and

memory cost compared to DARTs [1, 5, 18]. In addition, many of

the NAS methods on vision networks consider mixed quantisation

in their search space [5, 19], but limit the quantisation granularity

to per-convolution level.

Since GNNs being deployed in the cloud for analysing large-scale

knowledge graphs [6], quantisation will be an important method

for reducing power consumption and reducing latency when the

system is running a large number of GNN inferences on these

knowledge graphs per day. The reduced latency with quantisa-

tion is crucial for query answering speed and the smaller RAM

requirements support larger batch sizes and thus a larger service

throughput. While there are currently no well-known GNN appli-

cations for embedded devices, the knowledge and understanding

gained from a established low-precision Graph NAS algorithm may

enable future applications which would not have been possible

otherwise.

2.2 Graph neural network
Deep Learning on graphs has emerged into an important field of

machine learning in recent years, partially due to the increase in

the amount of graph-structured data. Graph Neural Networks has

scored success in a range of different tasks on graph data, such

as node classification [6, 10, 16], graph classification [20, 23, 28]

and link prediction [27]. There are many variants of graph neural

networks proposed to tackle graph structured data. In this work

we focus on GNNs applied to node classification tasks based on

Message-Passing Neural Networks (MPNN) [4]. The objective of the

neural network is to learn an embedding function for node features

so that they quickly generalise to other unseen nodes. This inductive

nature is needed for large-scale production level machine learning

systems, since they normally operate on a constantly changing

graph with many coming unseen nodes (e.g. shopping history on

Amazon, posts on Reddit etc.) [6]. It is also worth to mention that

many of these systems are high-throughput and latency-critical.

The reductions in energy and latency of the deployed networks

imply the service providers can offer a better user experience while

keeping a lower cost. Most of the manually designed GNN archi-

tectures proposed for the node classification use MPNN. The list

includes, but is not limited to, GCN [10], GAT [16], GraphSage [6],

and their variants [2, 15, 17, 26]. These works differ in ways of

computing the edge weights, sampling neighbourhood and aggre-

gating neighbour messages. We also relate to works focusing on

building deeper Graph Neural Networks with the help of residual

connections, such as JKNet [21]. To the best of our knowledge, there

is no prior work in investigating quantisation for Graph Neural

Networks.

There is a recent surge of interest in looking at how to ex-

tend NAS methods from image and sequence data to graphs. Gao

et al. proposed GraphNAS that is a RL-based NAS applied to graph

data [3]. Later, Zhou et al. combined the RL-based NAS with param-

eter sharing [31] and developed AutoGNN. Zhao et al. proposed a

gradient-based, single-shot NAS called PDNAS, and searched both

the micro- and macro-architectures of GNNs [30]. You et al.also
recently looked at the general design space of GNNs, but the study

does not focus on number represetations of GNNs [24]. All of these

graph NAS methods show superior performance when compared

to other manually designed networks.

3 METHOD
In this section, we first explain the architectural and quantisation

search spaces in Section 3.1, and then look at how the LGPNAS

algorithm work in Section 3.2.

3.1 Search space
We consider a single graph block, or a GNN layer, as four consecu-

tive sub-blocks (Equation (1)). Equation (1) considers node features

ℎ𝑘−1 from the 𝑘 −1 layer as inputs, and produces new node features

ℎ𝑘 with trainable attention parameters 𝑎𝑘 and weights 𝑤𝑘
. The

four sub-blocks, as illustrated in Equation (1), are the Linear block,

Attention block, Aggregation block and Activation block; these

sub-blocks have operations as search candidates, which is a similar

architectural search space to Zhao et al. [30] and Gao et al. [3]. We

provide a detailed description of the architectural search space in

the Appendix. In Equation (2), we label all possible quantisation

candidates using𝑄 . The quantisation function𝑄 can be applied not

only on learnable parameters (e.g.,𝑤𝑘
) but also activation values

between consecutive sub-blocks. In addition, we allow quantisation

options in Equation (2) to be different. For instance, 𝑄𝑎 can learn

to have a different quantisation from 𝑄𝑤 , meaning that a single

graph block receives a mixed quantisation for different quantisable

components annotated in Equation (2).

ℎ𝑘 = Act(Aggr(Atten(𝑎𝑘 , Linear(𝑤𝑘 , ℎ𝑘−1)))) (1)
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Table 1: Quantisation search space for weights and activa-
tions. Frac bitsmeans the number of fractional bits and total
bits represent the total bitwidth.

Weights Activations

Quantisation Frac Bits Total Bits Quantisation Frac Bits Total Bits

binary 0 1 fix2.2 2 4

binary 0 1 fix4.4 4 8

ternary 0 2 fix2.2 2 4

ternary 0 2 fix4.4 4 8

ternary 0 2 fix4.8 4 12

fix1.3 3 4 fix4.4 4 8

fix2.2 2 4 fix4.4 4 8

fix1.5 5 6 fix4.4 4 8

fix3.3 3 6 fix4.4 4 8

fix2.4 4 6 fix4.4 4 8

fix4.4 4 8 fix4.4 4 8

fix4.4 4 8 fix4.8 8 12

fix4.4 4 8 fix8.8 8 16

fix4.8 8 12 fix4.8 8 12

fix4.12 12 16 fix4.4 4 8

fix4.12 12 16 fix4.8 8 12

fix4.12 12 16 fix8.8 8 16

Table 2: Different types of attention mechanisms.𝑊 here is
parameter vector for attention. <, > is dot product, 𝑎𝑖 𝑗 is at-
tention for message from node 𝑗 to node 𝑖.

Attention Type Eqation

Const 𝑎𝑖 𝑗 = 1

GCN 𝑎𝑖 𝑗 =
1√
𝑑𝑖𝑑 𝑗

GAT 𝑎
𝑔𝑎𝑡

𝑖 𝑗
= LeakyReLU(𝑊𝑎 (ℎ𝑖 | |ℎ 𝑗 ))

Sym-GAT 𝑎𝑖 𝑗 = 𝑎
𝑔𝑎𝑡

𝑖 𝑗
+ 𝑎

𝑔𝑎𝑡

𝑗𝑖

COS 𝑎𝑖 𝑗 =<𝑊𝑎1ℎ𝑖 ,𝑊𝑎2ℎ 𝑗 >

Linear 𝑎𝑖 𝑗 = tanh(∑𝑗∈𝑁 (𝑖 ) (𝑊𝑎ℎ 𝑗 ))
Gene-Linear 𝑎𝑖 𝑗 =𝑊𝑔tanh(𝑊𝑎1ℎ𝑖 +𝑊𝑎2ℎ 𝑗 )

Table 3: Different types of activation functions.

Activation Eqation

None 𝑓 (𝑥) = 𝑥

Sigmoid 𝑓 (𝑥) = 1

1+𝑒−𝑥
Tanh 𝑓 (𝑥) = 𝑡𝑎𝑛ℎ (𝑥)

Softplus 𝑓 (𝑥) = 1

𝛽
log(1 + 𝑒𝛽𝑥 )

ReLU 𝑓 (𝑥) = 𝑀𝑎𝑥 (0, 𝑥)
LeakyReLU 𝑓 (𝑥) = 𝑀𝑎𝑥 (0, 𝑥) + 𝛼𝑀𝑖𝑛 (0, 𝑥)

ReLU6 𝑓 (𝑥) = 𝑀𝑖𝑛 (𝑀𝑎𝑥 (0, 𝑥), 6)
ELU 𝑓 (𝑥) = 𝑀𝑎𝑥 (0, 𝑥) +𝑀𝑖𝑛 (0, 𝛼 (𝑒𝑥 − 1))

ℎ𝑘linear = 𝑄𝑙 (Linear(𝑄𝑤 (𝑤𝑘 ), 𝑄ℎ (ℎ𝑘−1)))

ℎ𝑘atten = 𝑄𝑎𝑡 (Atten(𝑄𝑎 (𝑎𝑘 ), ℎ𝑘linear))

ℎ𝑘 = Act(𝑄𝑎𝑔 (Aggr(ℎ𝑘atten)))

(2)

The reasons for considering input activation values as quantisa-

tion candidates are the following. First, GNNs always consider large

input graph data, the computation operates on a per-node or per-

edge resolution but requires the entire graph or the entire sampled

graph as inputs. The amount of intermediate data produced during

the computation is huge and causes a large pressure on the amount

of on-chip memory available. Second, quantised input activations

with quantised parameters together simplify the arithmetic oper-

ations. For instance, Linear(𝑄𝑤 (𝑤𝑘 ), 𝑄ℎ (ℎ𝑘−1)))) considers both
quantised ℎ𝑘−1 and quantised𝑤𝑘

so that the matrix multiplication

with these values can operate on a simpler fixed-point arithmetic.

The quantisation search space identified in Equation (2) is dif-

ferent from the search space identified by Wu et al. [19] and Guo

et al. [5]. Most existing NAS methods focusing on quantising CNNs

look at quantisation at each convolutional block. In a graph neural

network, a single graph block is equivalent to a convolutional block.

In a single graph block, we look at more fine-grained quantisation

opportunities within the four sub-blocks. The quantisation search

considers a wide range of fixed-point quantisations. The weights

and activation can pick the numbers of bits in [1, 2, 4, 6, 8, 12, 16]
and [4, 8, 12, 16] respectively, and we allow different integer and

fractional bits combinations We list the detailed quantisation op-

tions in the Table 1. Table 1 shows the quantisation search space,

each quantisable operation identified will have these quantisa-

tion choices available. BINARY means binary quantisation, and

TERNARY means two-bit ternary quantisation. FIX𝑥 .𝑦 means fixed-

point quantisation with 𝑥 integer bits and 𝑦 bits for fractions. We

also demonstrate the number of fractional bits (FRAC BITS) and

total number of bits (TOTAL BITS).

In total, as listed in Table 1, we have 17 quantisation options; and

as illustrated in Equation (2), there are six possible components that

join the quantisation search, this gives us in total 17
6 = 24137569

quantisation combinations for a Graph Neural Network.

As illustrated in Figure 1, each graph block consists of four sub-

blocks, namely the linear block, attention block, aggregation block

and activation block. Each of these sub-blocks contain architectural

choices that joins the NAS process. In Table 2, we show all atten-

tion types that LPGNAS considers. The attention types includes

a various styles of parametric or non-parametric attention meth-

ods. In Table 3, we list all activation types that were considered in

the architectural search space. Apart from attention and activation

types, we also consider searching for the best hidden feature size,

using two fully-connected layers with an intermediate layer with

an expansion factor that can be picked from a set {1, 2, 4, 8}. In
terms of aggregation, the LPGNAS algorithm also considers choices

including𝑚𝑒𝑎𝑛, 𝑎𝑑𝑑 and𝑚𝑎𝑥 .

The considered search space is similar to prior works in this do-

main [3, 30, 31]. The possible number of architectural combinations

of a single layer is 7 × 8 × 3 × 4 = 672, for an 𝑛-layer network, this

means there are in total 672
𝑛
possible architectural combinations.

Combining the quantisation search space mentioned in the previ-

ous section, the search space has in total 24137569 × 672
𝑛
options.

Assuming the number of layers considered in the search is 𝑛 = 4,

this roughly gives us a search space of 10
17

options.

3.2 Low precision graph network architecture
search

We describe the Low Precision Graph Network Architecture

Search (LPGNAS) algorithm in Algorithm 1. (𝑥 , 𝑦), (𝑥𝑣 , 𝑥𝑣 ) are the

training and validation data respectively.𝑀 is the total number of
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Figure 1: An overview of the LPGNAS architecture. 𝑃𝑎 denotes controller output (Purple) for selecting different operations
within each graph block, and for routing shortcut connections between graph blocks. 𝑃𝑞 denotes quantisation controller (Q-
Controller) output (Green) for selecting quantisations for operations within graph blocks and shortcut connections. 𝐺𝑖 𝑗 are
gating functions conditioned on 𝑃𝑎 . Solid lines are input streams into the router while dashed lines are output streams.

Algorithm 1 LPGNAS algorithm

Input: 𝑥 , 𝑦, 𝑥𝑣 , 𝑦𝑣 ,𝑀 ,𝑀𝑎 ,𝑀𝑞 , 𝐾 , 𝛼 , 𝛽

Init(𝑤,𝑤𝑎,𝑤𝑞)
for 𝑖 = 0 to𝑀 − 1 do
𝑁 = NoiseGen(𝑖 , 𝛼)

𝑃𝑎, 𝑃𝑞 = 𝑔𝑎 (𝑤𝑎, 𝑥val, 𝑁 ), 𝑔𝑞 (𝑤𝑞, 𝑥val, 𝑁 )
𝜋𝑎, 𝜋𝑞 = argmax(𝑃𝑎), argmax(𝑃𝑞)
for 𝑖 = 0 to 𝐾 − 1 do

L = Loss(𝑥,𝑦, 𝜋𝑎, 𝜋𝑞)
𝑤 = Opt𝑤 (L)

end for
L𝑣 = Loss(𝑥𝑣, 𝑦𝑣, 𝜋𝑎, 𝜋𝑞)
if 𝑒 > 𝑀𝑎 then
𝑤𝑎 = Opt𝑤𝑎

(L𝑣)
end if
if 𝑒 > 𝑀𝑞 then

L𝑞 = QLoss(𝑃𝑎, 𝑃𝑞)
𝑤𝑞 = Opt𝑤𝑞

(L𝑣 + 𝛽𝐿𝑞)
end if

end for

search epochs, and𝑀𝑎 and𝑀𝑞 are the epochs to start architectural

and quantisation search. Similar to Zhao et al. [30], before the

number of epochs reaches𝑀𝑎 or𝑀𝑞 , LPGNAS randomly picks up

samples and warms up the trainable parameters in the supernet.

𝐾 is the number of steps to iterate in training the supernet. After

generating noise 𝑁 , we use this noise in architectural controller

𝑔𝑎 and quantisation controller 𝑔𝑞 together with the validation data

𝑥𝑣 to determine the architectural 𝜋𝑎 and quantisation 𝜋𝑞 choices.

After reaching the pre-defined starting epoch (𝑀𝑎 or𝑀𝑞 ), LPGNAS

starts to optimise the controllers’ weights (𝑤𝑎 and𝑤𝑞 ). We choose

the hyper-parameters 𝑀𝑞 = 20, 𝑀𝑎 = 50, 𝛼 = 1.0, 𝛽 = 0.1, unless

specified otherwise, based on the choices made by Zhao et al. [30].
In addition, we provide an ablation study in the Appendix to justify

our choices of hyper-parameters. Notice that QLoss estimates the

current hardware cost based on both architectural and quantisation

probabilities. As shown in Equation (3), we define 𝑆 as a set of values

that represents the costs (number of parameters) of all possible

architectural options: for each value 𝑠 in this set, we multiply it with

the probability 𝑝𝑎 from architecture probabilities 𝑃𝑎 generated by

the NAS architecture controller. Similarly, we produce the weighted-

sum for quantisation from the set of values 𝑆𝑞 that represents costs

of all possible quantisations. The dot product <, > between these
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two weighted-sum vectors produces the quantisation loss 𝐿𝑞 .

𝐿𝑞 = QLoss(𝑃𝑎, 𝑃𝑞)

=<
∑︁

𝑠∈𝑆,𝑝𝑎 ∈𝑃𝑎
(𝑠 ∗ 𝑝𝑎),

∑︁
𝑠𝑞 ∈𝑆𝑞 ,𝑝𝑞 ∈𝑃𝑞

(𝑠𝑞 ∗ 𝑝𝑞) > (3)

Figure 1 is an illustration of the LPGNAS algorithm. We use two

controllers (𝑔𝑎 and 𝑔𝑞) for architecture and quantisation (named

as Controller and Q-Controller in the diagram) respectively. The

controllers use trainable embeddings connected to linear layers to

produce architecture and quantisation probabilities. The architec-

ture controller provides probabilities (𝑃𝑎) for picking architectural

options of graph blocks and also the router. The router is in charge

of determining how each graph block shortcuts to the subsequent

graph blocks [30]. In addition, the quantisation controller provides

quantisation probabilities (𝑃𝑞 ) to both modules in graph blocks and

the linear layers in the router. In a graph block, only the linear

and attention layers have quantisable parameters and have matrix

multiplication operations; neither activation nor aggregation layers

have any trainable or quantisable parameters. However, all input

activation values of each layer in the graph block are quantised.

The amount of intermediate data produced during the computation

causes memory pressure on many existing or emerging hardware

devices, so even for modules that do not have quantisable param-

eters, we choose to quantise their input activation values to help

reduce the amount of buffer space required.

4 RESULTS
We compare LPGNAS to both manually designed and searched

GNNs on the Citation datasets, where the network takes the entire

graph as an input in a transductive learning setup [22].

The Citation datasets include nodes representing documents and

edges representing citation links. The task is to distinguish which

research field the document belongs to [22]. We use both manually

designed and searched networks from other NAS frameworks as

our baselines. For the manually designed baselines, we exhaustively

searched for the best quantisation combinations for the Citation

datasets.

The search terminates when quantisation causes a decrease in

accuracy bigger than 0.5% and rolls back to pick the previous quanti-

sation. For all reimplemented baselines, we train the networks with

three different seeds and report the averaged results with standard

deviations. For LPGNAS, we run the entire search and train cycle

three times and report the final averaged accuracy trained on the

searched network.

4.1 Citation datasets
Table 4 shows the performance of GraphSage [6], GAT [16], JKNet

[21], PDNAS [30] and LPGNAS on the citation datasets with a par-

tition of 0.6, 0.2, 0.2 for training, validation and testing respectively.

For the quantisation options of GraphSage, GAT and JKNet, we

manually perform a grid search on the Cora dataset. The grid search

considers various weight and activation quantisations in a decreas-

ing order. We reimplemented GraphSage [6], GAT [16] and JKNet

[21] for quantisation.

The results in Table 4 suggest that LPGNAS shows better ac-

curacy on both Cora and Pubmed with quantised networks. In

addition, although LPGNAS does not show the smallest sizes on

these two datasets, it is only slightly bigger than the manual base-

lines but shows a much better accuracy. On Citeseer, LPGNAS only

shows slightly worse accuracy (around 0.1% less) with a consider-

ably smaller size (around 9× reduction in model sizes).

To further prove the point that LPGNAS generates more efficient

networks, we sweep across different configurations and different

quantisation regularisations to produce Figure 2 to visulise the

performance of LPGNAS and how it performs with small model

sizes. Using different base network structure configurations and

different architectural and training learning rates, we can control a

trade-off between model sizes and accuracy. We then plot the Pareto

frontiers of LPGNAS putting model sizes on the horizontal axis

and accuracy on the vertical axis for Pubmed (Figure 2) by generat-

ing a group of searched models with different model size budgets.

Our proposed method shows a Pareto dominance compared to all

evaluated methods, meaning that it strikes the best combinations

between model sizes and accuracy. In this plot, we also demonstrate

how buffer size trades-off with accuracy. For buffer size, it means

the total size required to hold all intermediate activation values

during the computation of a single inference run with a batch size

of one. GNNs normally use large graphs as input data; the amount

of memory required to hold all intermediate values might be a lim-

iting factor in batched inference. Since LPGNAS uses quantisation

not only on weights but also on input activation values, it shows

a better trade-off than the floating-point baselines. For Figure 2,

models staying at the top left of the plots are considered as better,

since they are consuming less hardware resources and maintaining

high accuracy. In addition, in Figure 2, we compare PDNAS [30] to

LPGNAS and found that we outperformed the floating-point NAS

methods by staying at the top left in the plot.

4.2 Quantisation Search Time
To further illustrate that LPGNAS has significantly reduced the

amount of search time required, we provide Table 5 to show how

LPGNAS compares to a fixed JKNet-32 architecture in terms of the

amount of GPU hours spent for searching for the best quantisation

options. Because of the limited resources we have, we estimate

the quantisation search cost of a JKNet-32 by running 5 different

randomly selected quantisation combinations and multiply the

averaged training time with the total quantisation options.

Table 5 shows that LPGNAS can significantly reduce the search

time. For instance, on Citeseer, the search time can be reduced

by around 2270×. It is worth noting that, when performing this

quantisation search time comparison, we do not consider the ar-

chitectural search space of the baseline, meaning that the baseline

(JKNet) is a fixed-architecture. LPGNAS also searched for architec-

ture choices. This further increases the search time of the baseline

if this additional architectural space is considered.

5 CONCLUSION
In this paper, we propose a novel single-path, one-shot and gradient-

based NAS algorithm named LPGNAS. LPGNAS is able to generate

compact quantized networks with state-of-the-art accuracy. To

our knowledge, this is the first piece of work that systematically
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Table 4: Accuracy and size comparison on Cora, Pubmed and Citeseer with a data split of 60%, 20% and 20% for training,
validation and testing. Our results are averaged across 3 independent runs. The numbers in bold show best accuracies or
smallest sizes.

Method Quan

Cora CiteSeer PubMed

Accuracy Size Accuracy Size Accuracy Size

GraphSage float 74.5 ± 0.0% 92.3KB 75.3 ± 0.0% 237.5KB 85.3 ± 0.1% 32.2KB

GraphSage w10a12 74.3 ± 0.1% 28.8KB 75.1 ± 0.1% 74.2KB 85.0 ± 0.0% 10.1KB

GAT float 88.9 ± 0.0% 369.5KB 75.9 ± 0.0% 950.3KB 86.1 ± 0.0% 129.6KB

GAT w4a8 88.8 ± 0.1% 46.2KB 68.0 ± 0.1% 118.8KB 82.0 ± 0.0% 16.2KB

JKNet float 88.7 ± 0.0% 214.9KB 75.5 ± 0.0% 505.2KB 87.6 ± 0.0% 94.5KB

JKNet w6a8 88.7 ± 0.1% 40.3KB 73.2 ± 0.1% 94.7KB 86.1 ± 0.1% 17.7KB

PDNAS-2 float 89.3 ± 0.1% 192.2KB 76.3 ± 0.3% 478.6KB 89.1 ± 0.2% 72.8KB

PDNAS-3 float 89.3 ± 0.1% 200.0KB 75.5 ± 0.3% 494.4KB 89.1 ± 0.2% 81.4KB

PDNAS-4 float 89.8 ± 0.3% 205.0KB 75.6 ± 0.2% 500.0KB 89.2 ± 0.1% 102.7KB

PDNAS-4 w8a8 86.9 ± 0.1% 51.3KB 69.3 ± 0.1% 125.0KB 88.9 ± 0.1% 25.7KB

PDNAS-4 w12a16 88.8 ± 0.2% 76.9KB 74.4 ± 0.2% 187.5KB 89.0 ± 0.1% 38.5KB

LPGNAS mixed 89.8 ± 0.0% 67.3KB 76.2 ± 0.1% 56.5KB 89.6 ± 0.1% 45.6KB

Figure 2: Pareto Frontier of LPGNAS and PDNAS (only floating-point versions) [30] on the Pubmed datset [22], the manually
designed networks are shown as dots. On the left, we show the trade-off between model sizes and accuracy; on the right, the
trade-off is between buffer sizes and accuracy. Buffer sizes mean the amount of memory space required to store temporary
activations.

Table 5: Search cost in GPU hours, all experiments are con-
ducted on an NVIDIA GeForce RTX 2080 Ti GPU.

Dataset Cora Citeseer Pubmed

LPGNAS 3.2 3.6 4.2

JKNet-32 6518.5 8165.6 5289.1

studies the quantisation of GNNs. We define the GNN quantisa-

tion search space and show how it can be co-optimised with the

original architectural search space. The end results demonstrate

that a co-optimisation between the architectural and quantisation

spaces greatly improves network accuracy. The searched networks

show pareto dominance on a accuracy model size trade-off over all

manually designed networks.
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