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ABSTRACT

Deep Graph Neural Networks (GNNs) show promising performance
on a range of graph tasks, yet at present are costly to run and lack
many of the optimisations applied to DNNs. We show, for the first
time, how to systematically quantise GNNs with minimal or no
loss in performance using Network Architecture Search (NAS).
We investigate the novel quantisation search space of GNNs. The
proposed NAS mechanism, named Low Precision Graph NAS (LPG-
NAS), constrains both architecture and quantisation choices to be
differentiable. LPGNAS learns the optimal architecture coupled with
the best quantisation strategy for different components in the GNN
automatically using back-propagation in a single search round. On
the citation datasets, solving the task of classifying unseen nodes
in a graph, LPGNAS generates quantised models with significant
reductions in both model and buffer sizes but with similar accuracy
to manually designed networks and other NAS results. The reduced
latency with quantisation is crucial for the speed of GNN based
query answering and the smaller RAM requirements support larger
batch sizes and thus a larger service throughput. In particular, on
the Pubmed dataset, LPGNAS shows a better size-accuracy Pareto
frontier compared to seven other manual and searched baselines,
offering a 2.3X reduction in model size and also a 0.4% increase in
accuracy when compared to the best NAS competitor.

1 INTRODUCTION

Graph Neural Networks (GNNs) have been successful in fields
such as computational biology [33], social networks [6], knowledge
graphs [11], etc.. The ability of GNNs to apply learned embeddings
to unseen nodes or new subgraphs is useful for large scale machine
learning systems on graph data, ranging from analysing posts on
forums to creating product listings for shopping sites [6]. Most
of the large production systems have high throughputs, running
millions or billions of GNN inferences per second. This creates an
urgent need to minimise both the computation and memory cost
of GNN inference.

One common approach to reduce computation and memory over-
heads of Deep Neural Networks (DNNs) is quantisation [8, 9, 25, 29,
32]. A simpler data format not only reduces the model size but also
introduces the chance of using simpler arithmetic operations on
existing or emerging hardware platforms [8, 29]. Previous quanti-
sation methods focusing solely on DNNs with image and sequence
data will not obviously transfer well to GNNs. First, in CNNs and
RNNE, it is the convolutional and fully-connected layers that are
quantised [8, 14]. GNNs, however, follow a sample and aggregate
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approach [6, 30], where we can separate a basic building block in
GNNss into four smaller sub-blocks (Linear, Attention, Aggregation
and Activation); only a subset of these sub-blocks has trainable
parameters. Second, the design of GNN blocks involves a different
design space, where several attention and aggregation methods are
available and the choices of these methods have a direct interaction
with numerical precisions. Third, previous CNN NAS methods [19]
consider two possible quantisable components (weights and activa-
tions) for a single layer. Given n quantisation options, this provides
n? combinations. We show that a single GNN layer has n® quan-
tisation combinations, offering a significantly larger quantisation
search space (Section 3.1).

In this paper, we propose Low Precision Graph NAS (LPGNAS),
which aims to automatically design quantised GNNs. The proposed
NAS method is single-path, one-shot and gradient-based. Addition-
ally, the quantisation options of LPGNAS are at a micro-architecture
level so that different sub-blocks in a graph block can have differ-
ent quantisation strategies. In this paper, we make the following
contributions.

o To our knowledge, this is the first piece of work studying how
to systematically quantise GNNs. We identify the quantisable
components and possible search space for GNN quantisation.

e We present a single-path, one-shot and gradient-based NAS
algorithm (LPGNAS) for automatically finding low precision
GNNEs.

e We report LPGNAS results, and show how they significantly
outperfrom previous state-of-the-art NAS methods and man-
ually designed networks in terms of memory consumption
on the same accuracy budget on the citation datasets.

2 RELATED WORK

In this section, we first provide relevant literature in the field of
quantisation and network architecture search in Section 2.1. We
then review prior work in the field of graph neural networks and ex-
plain what recently proposed GNN NAS can achieve in Section 2.2.

2.1 Quantisation and network architecture
search

DNN:ss offer great performance and rapid time-to-market path on
a broad variety of tasks. Unfortunately, their high memory and
computation requirements can be challenging when deploying in
real-world scenarios. Quantisation directly shrinks model sizes
and rapidly simplifies the complexity of the arithmetic hardware.
Previous research shows that DNN models can be quantised to
surprisingly low precisions such as ternary [32] and binary [8].



Networks with extremely low precision weights have a signifi-
cant task accuracy drop due to the numerical errors introduced,
and sometimes require architectural changes to compensate [8].
In contrast, fixed-point numbers [9, 14] and other more complex
arithmetics [25, 29] have larger bitwidths but offer a better task
accuracy. These quantisation methods have primarily been applied
on convolutional and fully-connected layers since they are the most
compute-intensive building blocks in CNNs and RNNs. Another
way of reducing the inference cost of DNNs is architectural engi-
neering. For instance, using depth-wise separable convolutions to
replace normal convolutions not only costs fewer parameters but
also achieves comparable accuracy [7]. However, architectural en-
gineering is normally tedious and complex; recent research on NAS
reduces the amount of manual tuning in the architecture design
process. Initial NAS methods used evolutionary algorithms and
reinforcement learning to find optimal network architectures, but
each iteration of the search fully trains and evaluates many child
networks [13, 34], thus needing a huge amount of computation
resources and time. Liu et al. proposed Differentiable Architecture
Search (DARTS) that creates a supernet with all possible operations
connected by probabilistic priors [12]. The search cost of DARTs is
reduced by orders of magnitude - it is the same as training a single
supernet (one-shot). In addition, DARTSs is gradient-based, meaning
that standard Stochastic Gradient Descent (SGD) now can be used
to update these probabilistic priors. One major drawback of DARTs
is that all operations of the supernet are active during the search.
Recently proposed single-path NAS methods only update a sam-
pled network from the supernet at each search step, and are able
to converge quickly and significantly reduce the computation and
memory cost compared to DARTSs [1, 5, 18]. In addition, many of
the NAS methods on vision networks consider mixed quantisation
in their search space [5, 19], but limit the quantisation granularity
to per-convolution level.

Since GNNs being deployed in the cloud for analysing large-scale
knowledge graphs [6], quantisation will be an important method
for reducing power consumption and reducing latency when the
system is running a large number of GNN inferences on these
knowledge graphs per day. The reduced latency with quantisa-
tion is crucial for query answering speed and the smaller RAM
requirements support larger batch sizes and thus a larger service
throughput. While there are currently no well-known GNN appli-
cations for embedded devices, the knowledge and understanding
gained from a established low-precision Graph NAS algorithm may
enable future applications which would not have been possible
otherwise.

2.2 Graph neural network

Deep Learning on graphs has emerged into an important field of
machine learning in recent years, partially due to the increase in
the amount of graph-structured data. Graph Neural Networks has
scored success in a range of different tasks on graph data, such
as node classification [6, 10, 16], graph classification [20, 23, 28]
and link prediction [27]. There are many variants of graph neural
networks proposed to tackle graph structured data. In this work
we focus on GNNs applied to node classification tasks based on
Message-Passing Neural Networks (MPNN) [4]. The objective of the
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neural network is to learn an embedding function for node features
so that they quickly generalise to other unseen nodes. This inductive
nature is needed for large-scale production level machine learning
systems, since they normally operate on a constantly changing
graph with many coming unseen nodes (e.g. shopping history on
Amazon, posts on Reddit etc.) [6]. It is also worth to mention that
many of these systems are high-throughput and latency-critical.
The reductions in energy and latency of the deployed networks
imply the service providers can offer a better user experience while
keeping a lower cost. Most of the manually designed GNN archi-
tectures proposed for the node classification use MPNN. The list
includes, but is not limited to, GCN [10], GAT [16], GraphSage [6],
and their variants [2, 15, 17, 26]. These works differ in ways of
computing the edge weights, sampling neighbourhood and aggre-
gating neighbour messages. We also relate to works focusing on
building deeper Graph Neural Networks with the help of residual
connections, such as JKNet [21]. To the best of our knowledge, there
is no prior work in investigating quantisation for Graph Neural
Networks.

There is a recent surge of interest in looking at how to ex-
tend NAS methods from image and sequence data to graphs. Gao
et al. proposed GraphNAS that is a RL-based NAS applied to graph
data [3]. Later, Zhou et al. combined the RL-based NAS with param-
eter sharing [31] and developed AutoGNN. Zhao et al. proposed a
gradient-based, single-shot NAS called PDNAS, and searched both
the micro- and macro-architectures of GNNs [30]. You et al.also
recently looked at the general design space of GNNs, but the study
does not focus on number represetations of GNNs [24]. All of these
graph NAS methods show superior performance when compared
to other manually designed networks.

3 METHOD

In this section, we first explain the architectural and quantisation
search spaces in Section 3.1, and then look at how the LGPNAS
algorithm work in Section 3.2.

3.1 Search space

We consider a single graph block, or a GNN layer, as four consecu-
tive sub-blocks (Equation (1)). Equation (1) considers node features
h*=1 from the k — 1 layer as inputs, and produces new node features
kK with trainable attention parameters a¥ and weights wX. The
four sub-blocks, as illustrated in Equation (1), are the Linear block,
Attention block, Aggregation block and Activation block; these
sub-blocks have operations as search candidates, which is a similar
architectural search space to Zhao et al. [30] and Gao et al. [3]. We
provide a detailed description of the architectural search space in
the Appendix. In Equation (2), we label all possible quantisation
candidates using Q. The quantisation function Q can be applied not
only on learnable parameters (e.g., wk) but also activation values
between consecutive sub-blocks. In addition, we allow quantisation
options in Equation (2) to be different. For instance, Q, can learn
to have a different quantisation from Q,,, meaning that a single
graph block receives a mixed quantisation for different quantisable
components annotated in Equation (2).

KK = Act(Aggr(Atten(a¥, Linear(w*, K71)))) 1)
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Table 1: Quantisation search space for weights and activa-
tions. Frac bits means the number of fractional bits and total
bits represent the total bitwidth.

WEIGHTS ACTIVATIONS

QUANTISATION  Frac Brrs  TotaL Brts ‘ QUANTISATION  Frac Brrs  TotaL Brts

BINARY 0 1 FIX2.2 2 4
BINARY 0 1 FIX4.4 4 8
TERNARY 0 2 FIX2.2 2 4
TERNARY 0 2 FIx4.4 4 8
TERNARY 0 2 FIX4.8 4 12
FIx1.3 3 4 FIx4.4 4 8
FIX2.2 2 4 FIx4.4 4 8
FIX1.5 5 6 FIx4.4 4 8
FIX3.3 3 6 FIX4.4 4 8
FIX2.4 4 6 FIX4.4 4 8
FIX4.4 4 8 FIx4.4 4 8
FIX4.4 4 8 FIX4.8 8 12
FIX4.4 4 8 FIx8.8 8 16
FI1x4.8 8 12 FI1x4.8 8 12
FI1x4.12 12 16 FIx4.4 4 8
FI1x4.12 12 16 FIX4.8 8 12
FIx4.12 12 16 FI1X8.8 8 16

Table 2: Different types of attention mechanisms. W here is
parameter vector for attention. <, > is dot product, a;; is at-
tention for message from node j to node i.

ATTENTION TYPE ‘ EquATION

ConsT ajj =1
o1
GCN aij = Vi
GAT afjf‘f = LeakyReLU (W, (h;||h}))
_ gat gat
Sym-GAT aij = aj;; +aji
COS ajj =< Walhi, Wazhj >
LINEAR aij = tanh(zjeN(i) (Wahj))
GENE-LINEAR ajj = Wytanh(Wuih; + Wozhj)

Table 3: Different types of activation functions.

ACTIVATION ‘ EquaTtion

NoONE fx)=x

S1GMOID f(x) = He%
TANH f(x) = tanh(x)

SorteLus | f(x) = % log(1 + efX)
ReLU f(x) = Max(0,x)

LEaKYRELU | f(x) = Max(0,x) + aMin(0, x)

ReLU6 f(x) = Min(Max (0, x), 6)
ELU f(x) = Max(0,x) + Min(0, a(eX — 1))

e = Q1 (Linear(Q1u (), 04 (#1))
P pen = Qur (Atten(Qa (@), HE,..) @

BN = Act(Qag (Aggr(hien)))

The reasons for considering input activation values as quantisa-
tion candidates are the following. First, GNNs always consider large
input graph data, the computation operates on a per-node or per-
edge resolution but requires the entire graph or the entire sampled

graph as inputs. The amount of intermediate data produced during
the computation is huge and causes a large pressure on the amount
of on-chip memory available. Second, quantised input activations
with quantised parameters together simplify the arithmetic oper-
ations. For instance, Linear(QW(wk), Qh(hk_l)))) considers both
quantised A~ and quantised w¥ so that the matrix multiplication
with these values can operate on a simpler fixed-point arithmetic.

The quantisation search space identified in Equation (2) is dif-
ferent from the search space identified by Wu et al. [19] and Guo
et al. [5]. Most existing NAS methods focusing on quantising CNNs
look at quantisation at each convolutional block. In a graph neural
network, a single graph block is equivalent to a convolutional block.
In a single graph block, we look at more fine-grained quantisation
opportunities within the four sub-blocks. The quantisation search
considers a wide range of fixed-point quantisations. The weights
and activation can pick the numbers of bits in [1, 2,4, 6, 8,12, 16]
and [4, 8,12, 16] respectively, and we allow different integer and
fractional bits combinations We list the detailed quantisation op-
tions in the Table 1. Table 1 shows the quantisation search space,
each quantisable operation identified will have these quantisa-
tion choices available. BINARY means binary quantisation, and
TERNARY means two-bit ternary quantisation. FIXx.y means fixed-
point quantisation with x integer bits and y bits for fractions. We
also demonstrate the number of fractional bits (FRAC BITS) and
total number of bits (TOTAL BITS).

In total, as listed in Table 1, we have 17 quantisation options; and
as illustrated in Equation (2), there are six possible components that
join the quantisation search, this gives us in total 17 = 24137569
quantisation combinations for a Graph Neural Network.

As illustrated in Figure 1, each graph block consists of four sub-
blocks, namely the linear block, attention block, aggregation block
and activation block. Each of these sub-blocks contain architectural
choices that joins the NAS process. In Table 2, we show all atten-
tion types that LPGNAS considers. The attention types includes
a various styles of parametric or non-parametric attention meth-
ods. In Table 3, we list all activation types that were considered in
the architectural search space. Apart from attention and activation
types, we also consider searching for the best hidden feature size,
using two fully-connected layers with an intermediate layer with
an expansion factor that can be picked from a set {1,2,4,8}. In
terms of aggregation, the LPGNAS algorithm also considers choices
including mean, add and max.

The considered search space is similar to prior works in this do-
main [3, 30, 31]. The possible number of architectural combinations
of a single layer is 7 X 8 X 3 X 4 = 672, for an n-layer network, this
means there are in total 672" possible architectural combinations.
Combining the quantisation search space mentioned in the previ-
ous section, the search space has in total 24137569 X 672" options.
Assuming the number of layers considered in the search is n = 4,
this roughly gives us a search space of 10!7 options.

3.2 Low precision graph network architecture
search
We describe the Low Precision Graph Network Architecture

Search (LPGNAS) algorithm in Algorithm 1. (x, y), (xo, x,) are the
training and validation data respectively. M is the total number of
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Figure 1: An overview of the LPGNAS architecture. P, denotes controller output (Purple) for selecting different operations
within each graph block, and for routing shortcut connections between graph blocks. P; denotes quantisation controller (Q-
Controller) output (Green) for selecting quantisations for operations within graph blocks and shortcut connections. G;; are
gating functions conditioned on P,. Solid lines are input streams into the router while dashed lines are output streams.

Algorithm 1 LPGNAS algorithm

Input: x, y, Xy, Yo, M, Mg, Mg, K, , B
Init(w, wg, wq)
fori=0toM —1do
N = NoiseGen(i, a)
Pg,Pg = ga(Wa, Xyal, N), gq(qu Xyals N)
g, Tq = arg max(P,), arg max(Pq)
fori=0to K —1do
L = Loss(x, Yy, 74, 7q)
w = Opt,, (L)
end for
Ly = Loss(xv, Yo, Ta, Tq)
if e > M, then
wq = Opt,, (Lo)
end if
if e > Mg then
Lq = Qloss(P,, Pq)
wg = Optwq (Lo + BLg)
end if
end for

search epochs, and M, and My are the epochs to start architectural
and quantisation search. Similar to Zhao et al. [30], before the

number of epochs reaches M, or My, LPGNAS randomly picks up
samples and warms up the trainable parameters in the supernet.
K is the number of steps to iterate in training the supernet. After
generating noise N, we use this noise in architectural controller
Ja and quantisation controller g4 together with the validation data
Xy to determine the architectural 7, and quantisation 74 choices.
After reaching the pre-defined starting epoch (M, or My), LPGNAS
starts to optimise the controllers’ weights (wg and wg). We choose
the hyper-parameters My = 20, My = 50, = 1.0, = 0.1, unless
specified otherwise, based on the choices made by Zhao et al. [30].
In addition, we provide an ablation study in the Appendix to justify
our choices of hyper-parameters. Notice that QLoss estimates the
current hardware cost based on both architectural and quantisation
probabilities. As shown in Equation (3), we define S as a set of values
that represents the costs (number of parameters) of all possible
architectural options: for each value s in this set, we multiply it with
the probability p, from architecture probabilities P, generated by
the NAS architecture controller. Similarly, we produce the weighted-
sum for quantisation from the set of values Sq that represents costs
of all possible quantisations. The dot product <, > between these
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two weighted-sum vectors produces the quantisation loss Lg.

Lg = Qloss(Pg, Pg)

=< Z (s * pa), Z

SES,pa€P, $q€Sq:PqEPq

(sq * pq) > ®3)

Figure 1 is an illustration of the LPGNAS algorithm. We use two
controllers (g, and gq) for architecture and quantisation (named
as Controller and Q-Controller in the diagram) respectively. The
controllers use trainable embeddings connected to linear layers to
produce architecture and quantisation probabilities. The architec-
ture controller provides probabilities (P,) for picking architectural
options of graph blocks and also the router. The router is in charge
of determining how each graph block shortcuts to the subsequent
graph blocks [30]. In addition, the quantisation controller provides
quantisation probabilities (Py) to both modules in graph blocks and
the linear layers in the router. In a graph block, only the linear
and attention layers have quantisable parameters and have matrix
multiplication operations; neither activation nor aggregation layers
have any trainable or quantisable parameters. However, all input
activation values of each layer in the graph block are quantised.
The amount of intermediate data produced during the computation
causes memory pressure on many existing or emerging hardware
devices, so even for modules that do not have quantisable param-
eters, we choose to quantise their input activation values to help
reduce the amount of buffer space required.

4 RESULTS

We compare LPGNAS to both manually designed and searched
GNNs on the Citation datasets, where the network takes the entire
graph as an input in a transductive learning setup [22].

The Citation datasets include nodes representing documents and
edges representing citation links. The task is to distinguish which
research field the document belongs to [22]. We use both manually
designed and searched networks from other NAS frameworks as
our baselines. For the manually designed baselines, we exhaustively
searched for the best quantisation combinations for the Citation
datasets.

The search terminates when quantisation causes a decrease in
accuracy bigger than 0.5% and rolls back to pick the previous quanti-
sation. For all reimplemented baselines, we train the networks with
three different seeds and report the averaged results with standard
deviations. For LPGNAS, we run the entire search and train cycle
three times and report the final averaged accuracy trained on the
searched network.

4.1 Citation datasets

Table 4 shows the performance of GraphSage [6], GAT [16], JKNet
[21], PDNAS [30] and LPGNAS on the citation datasets with a par-
tition of 0.6, 0.2, 0.2 for training, validation and testing respectively.
For the quantisation options of GraphSage, GAT and JKNet, we
manually perform a grid search on the Cora dataset. The grid search
considers various weight and activation quantisations in a decreas-
ing order. We reimplemented GraphSage [6], GAT [16] and JKNet
[21] for quantisation.

The results in Table 4 suggest that LPGNAS shows better ac-
curacy on both Cora and Pubmed with quantised networks. In

addition, although LPGNAS does not show the smallest sizes on
these two datasets, it is only slightly bigger than the manual base-
lines but shows a much better accuracy. On Citeseer, LPGNAS only
shows slightly worse accuracy (around 0.1% less) with a consider-
ably smaller size (around 9x reduction in model sizes).

To further prove the point that LPGNAS generates more efficient
networks, we sweep across different configurations and different
quantisation regularisations to produce Figure 2 to visulise the
performance of LPGNAS and how it performs with small model
sizes. Using different base network structure configurations and
different architectural and training learning rates, we can control a
trade-off between model sizes and accuracy. We then plot the Pareto
frontiers of LPGNAS putting model sizes on the horizontal axis
and accuracy on the vertical axis for Pubmed (Figure 2) by generat-
ing a group of searched models with different model size budgets.
Our proposed method shows a Pareto dominance compared to all
evaluated methods, meaning that it strikes the best combinations
between model sizes and accuracy. In this plot, we also demonstrate
how buffer size trades-off with accuracy. For buffer size, it means
the total size required to hold all intermediate activation values
during the computation of a single inference run with a batch size
of one. GNNs normally use large graphs as input data; the amount
of memory required to hold all intermediate values might be a lim-
iting factor in batched inference. Since LPGNAS uses quantisation
not only on weights but also on input activation values, it shows
a better trade-off than the floating-point baselines. For Figure 2,
models staying at the top left of the plots are considered as better,
since they are consuming less hardware resources and maintaining
high accuracy. In addition, in Figure 2, we compare PDNAS [30] to
LPGNAS and found that we outperformed the floating-point NAS
methods by staying at the top left in the plot.

4.2 Quantisation Search Time

To further illustrate that LPGNAS has significantly reduced the
amount of search time required, we provide Table 5 to show how
LPGNAS compares to a fixed JKNet-32 architecture in terms of the
amount of GPU hours spent for searching for the best quantisation
options. Because of the limited resources we have, we estimate
the quantisation search cost of a JKNet-32 by running 5 different
randomly selected quantisation combinations and multiply the
averaged training time with the total quantisation options.

Table 5 shows that LPGNAS can significantly reduce the search
time. For instance, on Citeseer, the search time can be reduced
by around 2270x. It is worth noting that, when performing this
quantisation search time comparison, we do not consider the ar-
chitectural search space of the baseline, meaning that the baseline
(JKNet) is a fixed-architecture. LPGNAS also searched for architec-
ture choices. This further increases the search time of the baseline
if this additional architectural space is considered.

5 CONCLUSION

In this paper, we propose a novel single-path, one-shot and gradient-
based NAS algorithm named LPGNAS. LPGNAS is able to generate
compact quantized networks with state-of-the-art accuracy. To
our knowledge, this is the first piece of work that systematically
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Table 4: Accuracy and size comparison on Cora, Pubmed and Citeseer with a data split of 60%, 20% and 20% for training,
validation and testing. Our results are averaged across 3 independent runs. The numbers in bold show best accuracies or

smallest sizes.

Cora

METHOD UAN
& AccURrAacy SIZE

CITESEER PuBMED

AcCCURACY S1ZE AcCURACY SIZE

GRAPHSAGE FLOAT 74.5 £ 0.0% 92.3KB
GRAPHSAGE Ww10A12 | 74.3 £0.1% 28.8KB

GAT FLOAT 88.9+0.0% 369.5KB
GAT w4A8 88.8+0.1%  46.2KB
JKNET FLOAT 88.7 £ 0.0% 214.9KB
JKNET W6A8 88.7+0.1%  40.3KB

75.3+0.0% 237.5KB 85.3+0.1% 32.2KB
75.1+0.1% 74.2KB  85.0 +£0.0% 10.1KB
75.9+0.0% 950.3KB  86.1+0.0% 129.6KB
68.0+0.1% 118.8KB  82.0 +£0.0% 16.2KB
75.5+0.0% 505.2KB  87.6 £0.0%  94.5KB
73.2+0.1% 94.7KB  86.1+0.1% 17.7KB

PDNAS-2 FLOAT 89.3+0.1% 192.2KB
PDNAS-3 FLOAT 89.3+0.1% 200.0KB
PDNAS-4 FLOAT 89.8 +0.3% 205.0KB
PDNAS-4 w8Aa8 86.9+0.1% 51.3KB
PDNAS-4 w12A16 | 88.8 £0.2% 76.9KB

76.3+0.3% 478.6KB 89.1+0.2%  72.8KB
75.5+0.3% 494.4KB 89.1+0.2% 81.4KB
75.6 £0.2% 500.0KB 89.2+0.1% 102.7KB
69.3+0.1% 125.0KB 88.9+0.1% 25.7KB
74.4+0.2% 187.5KB 89.0+0.1% 38.5KB

LPGNAS  mxep | 89.8+£0.0% 67.3KB

76.2+0.1% 56.5KB  89.6 £0.1%  45.6KB

Pubmed
0.90 - =
/ *——X%
0.88
>
O
© —»— PDNAS
3 086 * © _e— LPGNAS
9}
< > v v GraphSage
» GraphSage-quan
0.84 e GAT
m  GAT-quan
JKNet
0.82 - n *  JKNet-quan
0 25 50 75 100 125 150 175

Model size (KB)

Pubmed

0.90 - —

0.88
>
0
©
.
3086- * —e— LPGNAS °
v}
b3 > v GraphSage v
» GraphSage-quan
0.84 e GAT
m  GAT-quan
JKNet
0.82 - ] *  JKNet-quan
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Buffer size (MB)

Figure 2: Pareto Frontier of LPGNAS and PDNAS (only floating-point versions) [30] on the Pubmed datset [22], the manually
designed networks are shown as dots. On the left, we show the trade-off between model sizes and accuracy; on the right, the
trade-off is between buffer sizes and accuracy. Buffer sizes mean the amount of memory space required to store temporary

activations.

Table 5: Search cost in GPU hours, all experiments are con-
ducted on an NVIDIA GeForce RTX 2080 Ti GPU.

Dataset ‘ Cora Citeseer Pubmed

LPGNAS 3.2 3.6 4.2
JKNet-32 | 6518.5  8165.6 5289.1

studies the quantisation of GNNs. We define the GNN quantisa-
tion search space and show how it can be co-optimised with the
original architectural search space. The end results demonstrate
that a co-optimisation between the architectural and quantisation
spaces greatly improves network accuracy. The searched networks
show pareto dominance on a accuracy model size trade-off over all
manually designed networks.
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